Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Proc Natl Acad Sci U S A ; 119(25): e2121778119, 2022 06 21.
Article in English | MEDLINE | ID: covidwho-1890409

ABSTRACT

Community-acquired pneumonia (CAP) has been brought to the forefront of global health priorities due to the COVID-19 pandemic. However, classification of viral versus bacterial pneumonia etiology remains a significant clinical challenge. To this end, we have engineered a panel of activity-based nanosensors that detect the dysregulated activity of pulmonary host proteases implicated in the response to pneumonia-causing pathogens and produce a urinary readout of disease. The nanosensor targets were selected based on a human protease transcriptomic signature for pneumonia etiology generated from 33 unique publicly available study cohorts. Five mouse models of bacterial or viral CAP were developed to assess the ability of the nanosensors to produce etiology-specific urinary signatures. Machine learning algorithms were used to train diagnostic classifiers that could distinguish infected mice from healthy controls and differentiate those with bacterial versus viral pneumonia with high accuracy. This proof-of-concept diagnostic approach demonstrates a way to distinguish pneumonia etiology based solely on the host proteolytic response to infection.


Subject(s)
COVID-19 , Community-Acquired Infections , Gene Expression Profiling , Peptide Hydrolases , Pneumonia, Bacterial , Animals , Biosensing Techniques , COVID-19/genetics , Community-Acquired Infections/classification , Community-Acquired Infections/genetics , Community-Acquired Infections/virology , Disease Models, Animal , Humans , Machine Learning , Mice , Nanoparticles , Peptide Hydrolases/genetics , Pneumonia, Bacterial/classification , Pneumonia, Bacterial/genetics
2.
IEEE Trans Neural Netw Learn Syst ; 32(5): 1810-1820, 2021 05.
Article in English | MEDLINE | ID: covidwho-1191869

ABSTRACT

Coronavirus disease (COVID-19) has been the main agenda of the whole world ever since it came into sight. X-ray imaging is a common and easily accessible tool that has great potential for COVID-19 diagnosis and prognosis. Deep learning techniques can generally provide state-of-the-art performance in many classification tasks when trained properly over large data sets. However, data scarcity can be a crucial obstacle when using them for COVID-19 detection. Alternative approaches such as representation-based classification [collaborative or sparse representation (SR)] might provide satisfactory performance with limited size data sets, but they generally fall short in performance or speed compared to the neural network (NN)-based methods. To address this deficiency, convolution support estimation network (CSEN) has recently been proposed as a bridge between representation-based and NN approaches by providing a noniterative real-time mapping from query sample to ideally SR coefficient support, which is critical information for class decision in representation-based techniques. The main premises of this study can be summarized as follows: 1) A benchmark X-ray data set, namely QaTa-Cov19, containing over 6200 X-ray images is created. The data set covering 462 X-ray images from COVID-19 patients along with three other classes; bacterial pneumonia, viral pneumonia, and normal. 2) The proposed CSEN-based classification scheme equipped with feature extraction from state-of-the-art deep NN solution for X-ray images, CheXNet, achieves over 98% sensitivity and over 95% specificity for COVID-19 recognition directly from raw X-ray images when the average performance of 5-fold cross validation over QaTa-Cov19 data set is calculated. 3) Having such an elegant COVID-19 assistive diagnosis performance, this study further provides evidence that COVID-19 induces a unique pattern in X-rays that can be discriminated with high accuracy.


Subject(s)
COVID-19/diagnostic imaging , Deep Learning , Neural Networks, Computer , X-Rays , COVID-19/classification , Deep Learning/classification , Diagnosis, Differential , Humans , Pneumonia, Bacterial/classification , Pneumonia, Bacterial/diagnostic imaging , Pneumonia, Viral/classification , Pneumonia, Viral/diagnostic imaging , Tomography, X-Ray Computed/classification
SELECTION OF CITATIONS
SEARCH DETAIL